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Abstract

Model comparison problems arise in many fields of science and engineering, including signal processing. In
these problems, we wish to quantify how well each of a set of possible models describes a set of observations.
Many numerical techniques exist to perform model comparison, but this paper focuses on nested sampling,
which is a numerical integration algorithm for evaluating probabilities of models. The original formulation
of nested sampling is a strictly sequential algorithm. Most modern advances in computing are via parallel
processing, however, and we therefore present a novel method for parallelizing nested sampling. This paper
sets out the mathematical foundation for this parallelization, as well as ideas for implementing it. Three
examples demonstrate the effectiveness of the present parallel technique in realistic scientific and engineering
data analysis problems.
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1. Introduction

Bayesian inference allows scientists and engineers to draw conclusions from data in the presence of
uncertainty. Inference problems confront practitioners in many contexts, including acoustics, astronomy,
and digital signal processing in general. Within inference, model comparison is an important class of
problems, which involves quantifying the plausibility of mathematical models given a set of observations, so
as to compare and rank various models quantitatively.

Knuth, et al. [1] give an overview of model comparison problems in various domains, with an emphasis on
signal processing. Design-as-inference refers to the application of Bayesian model comparison and parameter
estimation to design problems; it has been successfully applied to the design of finite impulse response (FIR)
filters by Chan and Goggans [2] and to the design of infinite impulse response (IIR) filters by Botts, et al. [3].
In acoustic signal processing, Bayesian model comparison has been applied to the analysis of multiple decay
slopes in coupled volumes [4–7], the analysis of room modes [8, 9], and the design and analysis of multilayer
sound absorbers [10].

These and other examples motivate the development of an efficient and effective method for performing
Bayesian model selection. Nested sampling [11–13] [14, Chapter 9] provides a good starting point. Nested
sampling is a robust method for numerically evaluating model probability integrals. In its original form it
is a serial algorithm. Modern advances in computing have mostly been directed to increasing the amount of
parallel processing power available to users, rather than simply increasing serial processing speed. Algorithms
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designed to be implemented on parallel computing architectures are therefore able to solve problems more
quickly on modern hardware.

The present paper develops a method for ‘parallelizing’ nested sampling in a way that is simple and
easy to implement. Other researchers have published methods for parallelizing nested sampling. Burkoff, et
al. [15] describe an alternate way to parallelize nested sampling, which works by discarding and replacing
multiple live samples for each likelihood constraint. (See Section 2.1.) Martiniani, et al. [16] describe another
application of the Burkoff method, and we have previously described [17] a method for implementing this
method while maintaining a given level of precision in the log-evidence estimate. The method described
below implements the parallelization of nested sampling in a different and more effective way.

Other ways to improve the performance of nested sampling without necessarily involving parallelization
have been presented by Brewer, et al. (diffusive nested sampling) [18], Feroz, et al. (MultiNest) [19], and
Handley, et al. (PolyChord) [20].

This paper is organized as follows. Section 2 provides a brief overview of Bayesian inference and nested
sampling, and motivates the development of a parallelized nested sampling algorithm. Section 3 describes
the specific method by which the samples produced by multiple independent runs of nested sampling can
be combined so as to generate a single estimate of the model probability. Section 4 details several strategies
for implementing this method of combining independent nested sampling chains. Section 5 provides three
illustrative examples of this method and demonstrates the method’s effectiveness. Section 6 concludes the
paper.

2. Bayesian Inference and Nested Sampling

Bayesian inference provides a uniquely consistent way to learn from observations in the presence of
uncertainty. Model-based Bayesian inference can be broken into two levels: parameter estimation and
model comparison. In traditional statistics, probability can be used to describe only random variables, but
in the Bayesian view of probability any proposition can be assigned a probability conditioned upon any
other. We may use Bayes’ theorem to write the probability for a set of model parameters Θ given observed
data D, model M , and prior information I, as

Pr(Θ|D,M, I) =
Pr(D|Θ,M, I)Pr(Θ|M, I)

Pr(D|M, I)
. (1)

Below, the following abbreviations will often be used: Pr(Θ|D,M, I) ≡ P(Θ) for the posterior, Pr(D|Θ,M, I) ≡
L(Θ) for the likelihood, Pr(Θ|M, I) ≡ π(Θ) for the prior, and Pr(D|M, I) ≡ Z for the evidence. Equation
(1) provides a framework for performing Bayesian parameter estimation. Various analytical and numerical
techniques exist for implementing (1) in this way. Gregory [21] provides a fine explanation of Bayesian
parameter estimation in general and techniques for implementing it in practice.

This paper is less concerned with parameter estimation and more concerned with the second layer of
inference, model comparison. Once again using Bayes’ theorem, we can express the probability for a model
M , given data D and prior information I, as

Pr(M |D, I) ∝ Pr(D|M, I)Pr(M |I). (2)

The normalizing constant Pr(D|I) is omitted here because proper posterior probabilities for models are
rarely necessary (or, in fact, available). To calculate this constant an exhaustive set of models must be
specified, which is usually impossible. Model selection mostly calls for the pairwise comparison of different
models in the light of the same data. It is then useful to write the ratio of probabilities of model Mi and
model Mj as

Pr (Mi|D, I)

Pr (Mj |D, I)
=

Pr (D|Mi, I)

Pr (D|Mj , I)

Pr (Mi|I)

Pr (Mj |I)
. (3)

This equation shows that the posterior ratio of probabilities is given by multiplying the prior ratio by the
ratio of likelihoods appearing in the first term on the right-hand side, which imports the data.
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The model priors (in the right-most fraction in (3)) are set according to the user’s prior knowledge, and
are known in advance of any observations. To find the pairwise ratios of model posteriors (the left-hand
side in (3)), we need to specify the model likelihood values. In fact the model likelihood in (3) is the same
expression as the evidence (the denominator) in the associated parameter estimation problem (1).

The evidence in (1) acts as a normalizing constant for the posterior distribution over the set of parameters
Θ. It can therefore be found by integrating the product of the prior and the likelihood for a given model
over the parameter space:

Pr(D|M, I) =

∫
Θ

Pr(D|Θ,M, I)Pr(Θ|M, I) dΘ. (4)

The integrand in (4) is often close to zero over much of Θ, with large values concentrated in a small
portion of the parameter space. Models may also have many parameters, so that the integration is in a
multi-dimensional space. As a result, numerical integration over the parameter space using any reasonable
discretization of the variables gives rise to unacceptably large errors.

Alternative techniques for computing the evidence have been adapted from statistical mechanics. The
evidence for a model given a set of data is analogous to the free energy in a given thermodynamic state.
Based on this analogy, thermodynamic integration [22] computes the Bayesian evidence by integrating the
expectation of the log-likelihood over an inverse temperature parameter.

Unfortunately, thermodynamic integration suffers from several serious limitations. It typically takes a
long time to run for problems with large numbers of data or a large number of parameters. Also, likelihood
functions with discontinuities–comparable to phase transitions in statistical mechanics–tend to confound
thermodynamic integration. Nested sampling [12] is another technique for computing Bayesian evidence
and was developed partly to overcome these limitations.

2.1. Nested Sampling

Nested sampling is similar to thermodynamic integration in that it side-steps the multi-dimensional
integral in (4) by using a one-dimensional reparameterization to find the evidence. Instead of cooling a
temperature parameter to gradually introduce the likelihood, nested sampling integrates the likelihood over
the prior mass. The prior mass, X, is defined as the proportion of the prior distribution contained within a
likelihood threshold L,

X(L) =

∫
{Θ:L(Θ)>L}

π(Θ) dΘ. (5)

As the prior mass is a 1-to-1 function of the likelihood, the likelihood threshold can be expressed as a
function of the prior mass. Ultimately the evidence can be expressed as

Z =

∫ 1

0

L(X) dX. (6)

The detailed derivation is given in Skilling’s original paper on nested sampling [12].
At first sight it appears that we are no better off with this representation, because the integral in (5) is

no easier to evaluate than the integral in (4). Nested sampling does not require exact computation of the
prior mass, however; an estimate is sufficient. Nested sampling simultaneously generates estimates for the
prior mass and incorporates them into a numerical evaluation of (6). This process will now be described.

Nested sampling proceeds by setting the initial likelihood threshold to 0 and drawing N samples from
π(Θ). These N samples are known as “live” samples. The likelihood values for each of these live samples
are computed exactly. The live sample with the least likelihood is then discarded from the set and recorded
for later use. The likelihood of the discarded sample is set as the new likelihood threshold, within which a
new sample will be generated in the next round of operations.

The shrinkage ti in the prior mass Xi at the ith step in the process is distributed as [12]

ti ∼ Beta(N, 1). (7)
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The prior mass is estimated at each likelihood threshold using the log-geometric mean of the shrinkage
(E(log ti) = −1/N). Remembering that ti is the shrinkage in the prior mass at step i, the prior mass at
each step can be computed using the cumulative product of the shrinkage estimates,

Xi =

i∏
k=1

tk. (8)

Once these prior mass estimates are computed, the evidence is estimated using a quadrature approximation
of (6). Upon assuming that we have collected m discarded samples, and setting X0 = 1,

Z ≈
m∑
i=1

(Xi−1 −Xi)Li. (9)

The bulk of the posterior distribution usually occupies a tiny fraction of the prior, approximately
exp(−H), where H is the negative relative entropy of the posterior (dP ) with respect to the prior (dX),

H =

∫
log(dP/dX) dP. (10)

Each discarded sample shrinks the prior mass by about exp(−1/N); it therefore takes about N ×H steps
to reach the bulk of the posterior. To ensure this region is reached, 2×N ×H steps are usually allowed for
before a nested sampling run is terminated. The error in the evidence estimate is dominated by two factors:
the error in the shrinkage estimate, and the error in the process used to replace the discarded sample at
each step. The latter is difficult to estimate ahead of time, but the uncertainty in the estimate due to the
shrinkage is bounded by [12]

exp
(
±
√
H/N

)
.

3. Parallelizing Nested Sampling

As in other numerical integration techniques, there is an antagonistic relationship between precision and
speed in nested sampling. Precision in the log-evidence estimate increases with the square root of N , whereas
the number of necessary likelihood thresholds increases with N . In this section we discuss our new method
for parallelizing nested sampling (subsection 3.1) by combining the results (i.e., the discarded samples) of
several nested sampling runs. We also contrast this new technique with the above-mentioned method for
discarding and replacing multiple live samples at once (subsection 3.2), originally developed by Burkoff [15]
and refined in our 2014 paper [17].

3.1. Combining Independent Chains

Our new method aims to side-step the antagonism between precision and speed by combining the results
(discarded samples) of several nested sampling runs, sorting the combined samples by likelihood, estimating
the new shrinkage between consecutive pairs of samples, and computing a new evidence estimate. To do
this it is necessary to know the distribution of the shrinkage in a combined and re-sorted set of discarded
samples. Lemmas 1 and 2 and Theorem 1 establish this distribution.

Lemma 1. The negative log of the prior mass Xi for the ith sample discarded from a nested sampling run
using N live samples has an Erlang density,

f− logXi
(x) =

N ixi−1 exp (−Nx)

(i− 1)!
, (11)

with shape parameter i and rate parameter N .

4



Proof. We prove Lemma 1 using the method of induction. Begin with the density of the shrinkage between
the (i+ 1)th and ith prior mass values, (7) and write it in functional form,

fti(t) = NtN−1. (12)

From (8), we can write the prior mass of the second sample as

X2 = t1t2 (13)

so that, by taking the negative logarithm of both sides,

− logX2 = (− log t1) + (− log t2) . (14)

The density of the 1-to-1 function Y = g(X) of a continuous numerical proposition X is given in probability
texts such as [23] as

fY (y) =

{
fX(h(y))

∣∣∣dhdy ∣∣∣ , h(y) ∈ X̃
0, otherwise

, (15)

where h(Y ) is the inverse of g(X), and X̃ is the support of fX(x). Here, Y = g (ti) = − log ti and
h(Y ) = exp(−Y ). By applying (15), we have

f− log ti(y) = fti(exp(−y))

∣∣∣∣ ddy exp(−y)

∣∣∣∣ = N exp(−Ny). (16)

Equation (16) shows that − log ti has an exponential density with mean 1/N . The sum of two continuous
numerical propositions has a density given by the convolution of the densities of the two propositions [23]:

f− logX2
(x) = f− log t1−log t2(x) =

∫
N exp(−Nk)N exp[−(x− k)N ] dk. (17)

An exponential density has support on the interval [0,∞), so we have the following restrictions: 0 ≤ k <∞
and 0 ≤ x− k <∞, or in other words

0 ≤ k ≤ x. (18)

The convolution integral becomes

f− logX2
(x) = N2 exp(−Nx)

∫ x

0

db = N2x exp(−Nx). (19)

Equation (19) establishes the base case (k = 1) for the method of induction.
Assume that the expression for k = i−1 is given by

f− logXi−1
(x) =

N i−1xi−2 exp(−Nx)

(i− 2)!
. (20)

By using (17) and the previously mentioned limits on distribution support, we have

f− logXi
(x) =

∫ x

0

N i−1ki−2 exp(−Nk)

(i− 2)!
N exp[−(x− k)N ] dk, (21)

=
N ixi−1 exp(−Nx)

(i− 1)!
. (22)

Equation (22) specifies a gamma density with shape parameter i and rate parameter N . As i is an
integer, (22) is specifically an Erlang density [24].
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Lemma 2. Let {M1(t); 0 < t < 1} and {M2(t); 0 < t < 1} be two independent processes, 0 < t < 1, and
let the following conditions hold:

Mi(t) ≥ 0 (23)

Mi(t) ∈ Z (24)

t2 ≥ t1 →Mi(t2) ≤Mi(t1). (25)

Let H{·} be a transformation that executes the substitution t = exp(−s), such that Ni(s) = H{Mi(t)},
and Ni(s) is a Poisson process. Let the sum of two processes, e.g. MΣ(t) = M1(t) + M2(t), represent a
single process with events that consist of the combination of events from the individual processes. Then the
transformation H{·} is linear in addition, i.e.

H{M1(t) +M2(t)} = H{M1(t)}+H{M2(t)} = N1(s) +N2(s). (26)

Proof. See Appendix A.

Theorem 1. The shrinkage si between consecutive prior mass values Yi+1 and Yi in a set of discarded
samples combined from M independent nested sampling runs, each using Nj , j = 1, · · · ,M live samples,
has a beta density

fsi(s) =

 M∑
j=1

Nj

 s(
∑M

j=1Nj)−1 (27)

with shape parameters
∑M
j=1Nj and 1.

Proof. The wait time for the ith event in a Poisson process is distributed as an Erlang density (which is a
special case of the gamma density with an integer shape parameter), [25, p. 291] as shown in (22). This
fact and Lemma 1 show that the variable − logXi for a set of samples discarded from a single run of nested
sampling follows a Poisson process. We can therefore apply the properties of Poisson processes to see what
happens when we combine sets of discarded samples from multiple independent runs of nested sampling.

Let Yi be the prior mass associated with the ith sample in a set of discarded samples combined from M
independent nested sampling runs, each of which uses Nj , j = 1, · · · ,M live samples. Let Q =

∑M
j=1Nj . If

M separate and independent Poisson processes with intensities Nj , j = 1, · · · ,M are combined, the result

is a single Poisson process with intensity
∑M
j=1Nj [26, p. 6]. It follows that − log Yi is distributed as

f− log Yi
(y) =

Qiyi−1 exp(−Qy)

(i− 1)!
, (28)

which is an Erlang density with shape parameter i and rate parameter Q.
It follows from the definition of the shrinkage that − log Yi =

∑i
j=1− log sj . The sum of propositions

with identical densities has a gamma density if and only if the propositions being added also have gamma
densities. In this case where the shape parameter is 1, the densities of − log si are also exponential,

f− log si(s) = Q exp(−Qs). (29)

The transform in (16) leads to
fsi(s) = QsQ−1, (30)

which is the beta distribution with parameters Q =
∑M
j=1Nj and 1. Finally, Lemma 2 shows that the

transformation from a process with wait time− log si to a process with wait time si is a linear transformation,
and our result follows.

Theorem 1 demonstrates that using a combined set of discarded samples from M independent nested
sampling processes which use N live samples each, the evidence estimate can be computed as if one nested
sampling process had produced the samples, using M ×N live samples.
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Figure 1: CDFs for the combined and sampled shrinkage, Beta(N, 1), and Beta(N ×M, 1)

3.1.1. Numerical example

We now give a numerical example that demonstrates the validity of the result in theorem 1.

Example. Let M = 32. Generate M sets of 10, 000 shrinkage samples from Beta(100, 1) (i.e., N = 100).
Use (8) to compute the associated prior mass for each sample in each set. Combine the independent sets of
samples, then sort the combined sample by prior mass. 1 Compute the actual shrinkage between each pair
of consecutive samples. Compare the cumulative distribution function (CDF) of the combined shrinkage
samples with the CDFs of Beta(N, 1) and Beta(N ×M, 1). The CDF of the samples should closely match
the CDF of Beta(N ×M, 1).

Result. Execution of this procedure yielded the empirical CDF shown in Figure 1. The CDFs for Beta(N, 1)
and Beta(N ×M, 1) are also shown in Figure 1. The empirical CDF closely matches the CDF for Beta(N ×
M, 1), confirming the result in Theorem 1.

3.2. Discarding and Replacing Several Samples at Once

Here we describe the parallel nested sampling technique developed by Burkoff et al. [15] and subsequently
refined by us [17]. The main idea behind this method for parallelizing nested sampling is that, for a single
nested sampling process with N1 live samples, by discarding and replacing R � N1 samples at once we
need only HN1/R steps to reach the desired convergence in the log-evidence estimate. The variance of the
shrinkage distribution also increases linearly with R [27], so if we wish to maintain the same precision in
the log-evidence estimate then we must also scale the number of live samples as NR =

√
RN1. This scaling

implies that HN1/
√
R steps are required to reach convergence, so that our speed-up factor is approximately√

R.

1Prior mass is a monotonic function of the likelihood constraint, so that sorting by prior mass is equivalent to sorting by
likelihood.
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4. Implementation

Implementation of the method described in section 3 is flexible, and depends on the user’s specific needs.
The main idea is that two or more independent runs of nested sampling are conducted with identical numbers
of live samples, and the results are then combined and used to generate an estimate of the evidence.

The combination of results for multiple runs proceeds as follows. Let each sample be represented by a
data structure with three fields: parameter array, log-likelihood, and log-weight. The samples from each run
are combined into one large array, the associated log-weights are discarded, and the samples are sorted by
log-likelihood. The log-weight is then re-estimated for each sample using the new ordering and the combined
number of live samples, according to the shrinkage distribution given in Theorem 1. The log-evidence is
then estimated according to (9) using the new log-weights.

The nested sampling runs can be implemented concurrently or sequentially. Here are some situations
that might plausibly arise:

• If you know the value of N necessary to give the precision you require, then instead of performing one
run with N live samples, perform M runs concurrently on multiple processor cores or supercomputer
nodes, each run using dN/Me live samples.

• If you have an evidence estimate but it is not precise enough, perform several more nested sampling
runs incorporating the data, then combine the old and new results to obtain a more precise estimate.

• If you suspect that the distribution you are exploring is highly multi-modal, perform many independent
nested sampling runs using a relatively small N so as to increase the likelihood that each mode is well-
explored.

4.1. Speed-up

In the first of these three cases the speed-up may be substantial, theoretically by up to a factor of M ,
but this is limited by several factors. Each nested sampling run involves no communication with the other
runs. The speed-up is therefore limited by the total number of live samples used, by the time needed to
start each independent process, and by the time needed to combine and process the final results.

Each process must use at least one live sample. If N total live samples are used then not more than N
processing units can be used to divide the work.

Whatever the specific architecture used to parallelize the computation, a certain amount of time and
computational effort will be needed to copy the necessary data and instructions to the individual processing
units before beginning each run. Further time is involved when each processing unit is finished and commu-
nicates its results back to the central controlling implementer. Also, the combining of the sets of discarded
samples, recomputing of the sample weights, and computing the final evidence takes further time.

Relative to the older method of parallelizing nested sampling by discarding and replacing multiples
samples at once, the theoretical speed-up, given M workers, is by a factor of

√
M . Thus, our new method

requires 1/
√
M as many likelihood evaluations per worker compared with the older method. The newer

method should therefore be preferred over the older method in all cases, unless an external factor (such as
the MCMC method used to replace samples) points to use of the older method.

5. Examples

In this section we demonstrate the performance of combined-chain nested sampling using three problems
as examples. These include an artificial, highly multi-modal likelihood function, a simulated spectrum
analysis problem, and a twin Gaussian shell problem in 20 and 30 dimensions. For these examples, we use
nested sampling as described in sections 2.1 and 3. Each example uses a different number of live samples N
and a different number of independent runs M .

The method used to replace the discarded sample at each likelihood constraint is slightly different in each
example. In both examples we use some form of Metropolis MCMC, which takes a sample at random from
the surviving collection of live samples and moves it randomly around the likelihood-constrained parameter
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space. The final location is used as the new live sample. Both examples use uniform priors, and the
Metropolis acceptance criterion is then simple: if at any time the sample lands outside of the likelihood
constraint, it is rejected; if it lands inside the likelihood constraint, it is accepted.

In the following examples, constrained prior exploration differs in how the samples are moved throughout
the parameter space. For the eggcrate example and the twin Gaussian shell example (section 5.1 and 5.3),
the moves are drawn from a standard normal distribution scaled by a factor that is adjusted at each step.
Both parameters are changed simultaneously, and, at the end of each step, the step size scaling factor is
increased or decreased so as to maintain a roughly even acceptance ratio.

For the multiple stationary frequency example (section 5.2), a Gaussian step is also used, but each
parameter is varied individually. At each step of the exploration procedure a random ordering of the
parameters is chosen, and the sample is moved in one dimension at a time. The acceptance rate is monitored
separately for each parameter, and a scaling factor corresponding to each parameter is updated at the end
of each MCMC step in order to maintain a roughly even acceptance ratio.

5.1. Eggcrate Likelihood

The first example is the “eggcrate” toy problem from [19]. The posterior density in this problem is highly
multimodal, so that a large number of live samples is necessary to estimate the evidence accurately and
to sample the entire density. Our results for this example show that combining many independent nested
sampling chains with few live samples gives a result equivalent to using one chain with many live samples
in the presence of many modes.

The eggcrate function has two independent parameters, with joint prior

π(Θ) =

(
1

10π

)2

1[0,10π](Θ1)1[0,10π](Θ2). (31)

The likelihood function is

L(Θ) = exp

{[
2 + cos

(
Θ1

2

)
cos

(
Θ2

2

)]5
}
. (32)

In this case the log-likelihood is more useful for visualization and the numerical dynamic range:

logL(Θ) =

[
2 + cos

(
Θ1

2

)
cos

(
Θ2

2

)]5

. (33)

Feroz et al. [19] provide an evidence value of logZ = 235.88 using numerical integration over a fine grid.
Upon applying Bayes’ theorem, the posterior distribution for the parameters Θ is

P(Θ) =
exp

{[
2 + cos

(
Θ1

2

)
cos
(

Θ2

2

)]5} ( 1
10π

)2
1[0,10π](Θ1)1[0,10π](Θ2)

exp(235.88)
. (34)

5.1.1. Results

The results shown here were achieved using N = 16 live samples in each of M = 20 independent nested
sampling runs. The uncertainty in the log-evidence estimate was estimated by performing 20 separate runs of
the configuration with N = 16, M = 20. The estimated log-evidence value is logZ = 235.84± 0.1616. This
estimate is well within a single standard deviation of the log-evidence estimate of 235.88 given in [19]. Figure
2a shows the log-posterior for the eggcrate function, and Figure 2b shows a normalized log-histogram of the
samples obtained using nested sampling, resampled using importance sampling as described by Goggans and
Chi [22]. The normalized log-histogram in Figure 2b shows that each mode of the posterior was sampled
well.
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Figure 2: Eggcrate figures

5.2. Detection of Multiple Stationary Frequencies

In the second example, we want to estimate the number of stationary frequencies present in a signal as
well as the value of each frequency. This problem is similar to the problem of multiple stationary frequency
estimation in [28, Chapter 6], with the additional task of determining the number of stationary frequencies
present. This example demonstrates the value of the present parallel nested sampling method. Differences
among log-evidence values for models containing not less than the most probable number of frequencies
tend to be small, meaning that a precise estimate of these log-evidence values is essential to the task of
determining the most probable model.

Each stationary frequency (j) in the model is determined by three parameters: the in-phase amplitude
(Aj), the quadrature amplitude (Bj), and the frequency (fj). Given J stationary frequencies, the model at
time step ti takes the following form:

g (ti; Θ) =

J∑
j=1

Aj cos (2πfjti) +Bj sin (2πfjti) , (35)

where Θ is the parameter vector
Θ = [A1B1 f1 · · · AJ BJ fJ ]

T
.

For the purposes of this example the noise variance used to generate the simulated data is known, and we
consequently use a Gaussian likelihood function,

L(Θ) =

I∏
i=1

exp

{
− [g (ti; Θ)− di]2

2σ2

}
, (36)

for I simulated data di and noise variance σ2. The log-likelihood function is then

logL(Θ) = −
I∑
i=1

[g (ti; Θ)− di]2

2σ2
. (37)

Each model parameter is assigned a uniform prior distribution with limits as shown in Table 1.
Our test signal is a sum of two sinusoids, and zero-mean Gaussian noise with variance σ2 = 0.01. This

signal is sampled at randomly-spaced instants of time, in order to demonstrate that this time-domain method
does not require uniform sampling to perform spectrum estimation. Bretthorst [29] demonstrates that the
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Table 1: Prior bounds for multiple stationary frequency model parameters

Lower bound Upper bound

Aj −2 2

Bj −2 2

fj 0 Hz 6.4 Hz

Table 2: Parameters used to generate simulated signal

j Aj Bj fj (Hz)

1 1.0 0.0 3.1

2 1.0 0.0 5.9

Nyquist critical frequency in the case of nonuniform sampling is 1/2∆T ′, where ∆T ′ is the dwell time.
The dwell time is not defined for arbitrary-precision time values as used in this example, so we must choose
another limiting value. A more conservative limit is given by 1/10∆Tavg, where ∆Tavg is the average spacing
between time steps, 1/64 s. This formulation yields a prior maximum limit of 6.4 Hz, as shown in Table
1. The parameters used to generate the simulated data are shown in Table 2. The samples from the signal
with noise are shown in Figure 3.

5.2.1. Results

Using the data shown in Figure 3, we estimate log-evidence values under the assumption that 1, 2, 3, and
4 sinusoids are present. The log-evidence is estimated using nested sampling with three sets of algorithm
parameters: N = 20 and M = 1; N = 200 and M = 1; and N = 50 and M = 4. For comparison, we
also include results from the old method of parallelizing nested sampling, using multiple replacement of live
samples with N = 400 and R = 4. For each of the proposed models and algorithm parameter choices we
conduct 20 separate nested sampling runs in order to quantify empirically the precision of the log-evidence
estimate associated with each set of algorithm parameters. Box and whisker plots are shown in Figures 4,
5, and 6 so as to summarize the log-evidence results from each of these nested sampling runs. A box and
whisker plot is also shown in Figure 7 for the log-evidence results for 20 runs each of nested sampling using
the old parallel algorithm. In these box and whisker plots, the center line represents the median, the top and
bottom of the box represents the third and first quartiles, the ends of the whiskers represent the maxima
and minima of the observed values that fall within 1.5 times the interquartile range, and any values that
fall outside that range are plotted as plus signs. The ordinate axis in each of these plots is truncated, so
that the log-evidence values for each proposed model can be clearly displayed. For the 2-sinusoid model,
one outlier is excluded from the plot in Figure 4 because it is some 102 standard deviations away from the
mean.

Table 3 shows the mean and standard deviation of the log-evidence results for the 2-sinusoid model
according to the trials using various parameter settings.

In the results for one run of nested sampling with N = 20 live samples (Figure 4), the log-evidence
estimates for the models with 2, 3, and 4 sinusoidal components overlap to some extent. In usual practice
we would only wish to perform one run of nested sampling to obtain a log-evidence estimate, but these results
demonstrate that N = 20 does not yield sufficient precision that would let us determine the maximum a-
posteriori (MAP) model from a single run. Figure 5 demonstrates that, by raising the number of live samples
to N = 200, a level of precision is obtained that picks out model 2 as the clear MAP model, with no overlap
with model 3 or model 4. Figure 6 shows that upon combining the results of M = 4 independent runs of
nested sampling, each using N = 50 live samples, we obtain similar precision to that in the case with M = 1
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Figure 3: The simulated signal. The points represent the non-uniformly sampled points from the original signal corrupted by
Gaussian noise.
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Figure 4: Model log-evidence, N = 20, M = 1, 20 tests each

Table 3: Multiple stationary frequency log-evidence for the model with 2 sinusoids, for each set of algorithm parameters. One
outlier is excluded from the mean and standard deviation values for N = 20, M = 1.

Algorithm N M R Mean logZ StDev logZ

New Parallel NS 20 1 - -78.01 3.135

” 200 1 - -76.68 0.5466

” 50 4 - -76.72 0.6665

Old Parallel NS 400 - 4 -76.37 0.5512
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Figure 5: Model log-evidence, N = 200, M = 1, 20 tests each
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Figure 6: Model log-evidence, N = 50, M = 4, 20 tests each
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Figure 7: Model log-evidence, N = 400, R = 4, 20 tests each, using the old parallel nested sampling algorithm

and N = 200.
Table 3 summarizes the mean and standard deviation for the log-evidence for the 2-sinusoid model in the

MSF problem. The results show that the standard deviation in the log-evidence estimates for the correct
model are similar for: the N = 200, M = 1 case; the N = 50, M = 4 case; and the N = 400, R = 4
case. The standard deviation is slightly greater for the N = 50, M = 4 case, possibly indicating a less
efficient likelihood-constrained prior exploration process with fewer live samples per worker. The difference
is slight, however, and the speed-up apparent in the N = 50, M = 4 case supports the use of the new
parallel approach in this application.

As mentioned in section 3, the run time of nested sampling increases linearly with the number of live
samples. So, because we can obtain similar precision from 4 separate runs with N = 50 and 1 run with
N = 200, we obtain a nearly four-fold speed increase by using the combined-chain nested sampling technique.

5.3. Twin Gaussian Shells

The final example is the twin Gaussian shell problem, also from [19]. In [19], the authors present results
for this problem in up to 30 dimensions. Handley, et al. [20] also use this problem in 100 dimensions to test
their algorithm. This problem presents a few interesting challenges to our nested sampling implementation.
Because the likelihood takes the form of a thin, curved density whose mass centers on a hyper-spherical
shell, exploration of the constrained prior at high likelihood values is difficult. The bimodal nature of the
problem also challenges the constrained prior exploration process. Finally, the examples we explore are
high-dimensional to the point that standard numerical integration techniques would be useless.

The likelihood function in the twin Gaussian shells problem takes the form,

L(Θ) =
1√

2πw1

exp

[
− (|Θ− c1| − r1)2

2w2
1

]
+

1√
2πw2

exp

[
− (|Θ− c2| − r2)2

2w2
2

]
. (38)

Following [19], we set the parameters as follows: w1 = w2 = 0.1, r1 = r2 = 2, c1 = [−3.5, 0, · · · , 0]T ,
and c2 = [3.5, 0, · · · , 0]T . We use a uniform prior over the hypercube that spans [−6, 6] in each dimension.
Figure 8 shows a pseudo-color plot of a 2-dimensional twin Gaussian shell with parameters and prior range
as described previously.

14



Figure 8: Pseudo-color plot of a 2-dimensional twin Gaussian shell with w1 = w2 = 0.1, r1 = r2 = 2, c1 = [−3.5, 0]T , and
c2 = [3.5, 0]T . The color values correspond to likelihood values

Table 4: 20- and 30-dimension twin Gaussian shell log-evidence results for each algorithm setting, 20 runs each. The mean,
standard deviation, and root mean squared error (RMSE) with respect to the analytic value given in [19] are shown. The
analytic log-evidence value is -36.09 for 20-D and -60.13 for 30-D.

ndim N M Mean logZ StDev logZ RMSE

20 200 1 -36.23 0.4130 0.4349

20 50 4 -36.09 0.3341 0.3341

30 300 1 -60.22 0.4984 0.5067

30 75 4 -60.09 0.4100 0.4120

5.3.1. Results

We tested our nested sampling algorithm using this problem in 20 and 30 dimensions. The results are
presented in this section.

We performed 20 tests each using N = 200,M = 1 and N = 50,M = 4 for the 20-dimensional case
and N = 300,M = 1 and N = 75,M = 4 for the 30-dimensional case. The results from these tests are
shown in Table 4. The analytic log-evidence value given in [19] for the 20-D and 30-D twin Gaussian shell
problems are -36.09 and -60.13. The results in Table 4 show that both algorithm settings produce results
within one standard deviation of the true value for both problems. Additionally, the results for ndim = 20,
N = 50, M = 4 have a mean value that is exactly correct up to four significant digits and have standard
deviation and root mean square error values that are noticeably less than those for the N = 200, M = 1
setting. While the results for ndim = 30, N = 75, M = 4 do not have a mean that is exactly correct,
the mean is much closer to the analytic value than that in the serial configuration, and the RMSE is again
significantly less in the parallel configuration than in the serial configuration. The reason for the decrease
in error for the parallel configuration versus the serial configuration could be that the parallel configuration
somehow compensates for imperfect sampling of the prior distribution within each likelihood contour in the
serial configuration. These results demonstrate that our algorithm can handle distributions with curving
degeneracies, multi-modal distributions, and high-dimensional problems at least as well as standard (serial)
nested sampling, all while providing a significant speed-up on parallel hardware.
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6. Conclusion

The nested sampling algorithm, as conceived originally, is implemented in a strictly serial fashion. By
combining the samples produced by multiple independent runs of nested sampling, we have developed a
method for efficiently performing Bayesian model selection in a way that takes advantage of modern parallel
computing architectures. We have given the mathematical foundation for estimating the evidence from
these combined chains, as well as several ideas for practical implementation of the method. Three examples
have demonstrated the utility and effectiveness of the technique for a variety of problem types, including a
problem with a highly multi-modal distribution, a data analysis problem, and a problem with a distribution
that is high-dimensional, curving, and multi-modal.

Combined-chain nested sampling is a generalized technique that is capable of providing the foundation
for other, potentially more specialized methods. Future work could adapt current techniques that involve
nested sampling and make use of the present combined-chain method.

Appendix A. Proof of Lemma 2

Proof. M1(t) and M2(t) are discrete random variables parameterized by t. A necessary condition for (26)
to be satisfied is therefore that the p.m.f. of the RV on the left is equivalent to the p.m.f. of the RV on the
right.

Let {N1(s); s > 0} and {N2(s); s > 0} be Poisson counting processes with rates λ1 and λ2. Let N(s) =
N1(s) +N2(s). The probability mass functions for N1(s) and N2(s) are given as

pN1(s)(n1) =
(λ1s)

n1 exp (−λ1s)

n1!
(A.1)

pN2(s)(n2) =
(λ2s)

n2 exp (−λ2s)

n2!
. (A.2)

The distribution of N(s), which comprises the sum of N1(s) and N2(s), is given as a convolution of the
distributions for N1(s) and N2(s):

pN(s)(n) =

∞∑
k=−∞

pN1(s)(k)pN2(s)(n− k). (A.3)

These are counting processes, which are zero-valued unless k ≥ 0 and n− k ≥ 0. Thus, 0 ≤ k ≤ n, and the
convolution sum (A.3) becomes

pN(s)(n) =

n∑
k=0

pN1(s)(k)pN2(s)(n− k) (A.4)

=

n∑
k=0

(λ1s)
k

exp (−λ1s)

k!

(λ2s)
n−k

exp (−λ2s)

(n− k)!
(A.5)

=

n∑
k=0

(λ1/λ2)
k

(λ2s)
n

exp [− (λ1 + λ2) s]

k!(n− k)!
(A.6)

= (λ2s)
n

exp [− (λ1 + λ2) s]

n∑
k=0

(λ1/λ2)
k

k!(n− k)!
(A.7)

= (λ2s)
n

exp [− (λ1 + λ2) s]
[(λ1 + λ2) /λ2]

n

n!
(A.8)

=
[s (λ1 + λ2)]

n
exp [− (λ1 + λ2) s]

n!
. (A.9)

This result establishes the right-hand side of (26).
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Now carry out the inverse transform H−1{·} on (A.1) and (A.2):

pM1(t)(m1) =
(−λ1 log(t))

m1 exp (λ1 log(t))

m1!
=

(−λ1 log(t))
m1 tλ1

m1!
(A.10)

pM2(t)(m2) =
(−λ2 log(t))

m2 exp (λ2 log(t))

m2!
=

(−λ2 log(t))
m2 tλ2

m2!
. (A.11)

Let M(t) = M1(t) +M2(t), and find the p.m.f. for M(t) as in (A.3). The result is

pM(t)(m) =
(−1)m (λ1 + λ2)

m
(log t)mtλ1+λ2

m!
. (A.12)

Carry out the transform

pH{M(t)}(m) = pN(s)(n) =
[s (λ1 + λ2)]

n
exp [− (λ1 + λ2) s]

n!
(A.13)

(A.9) and (A.13) are identical, so we have shown that

pH{M1(t)+M2(t)}(m) = pH{M1(t)}+H{M2(t)}(m). (A.14)

As M(t) and N(s) represent random processes, their p.m.f.s are actually probability mass functionals, not
functions. Let f(t) = tλ1+λ2 and g(s) = (λ1 + λ2) s. We can express these functionals as

pM(t)(m) = F1[f(t)] =
(−1)m (log f(t))

m
f(t)

m!
(A.15)

pN(s)(n) = F2[g(t)] =
[g(s)]

n
exp [−g(s)]

n!
. (A.16)

The mean and autocorrelation functions of these mass functionals can depend only on the functions f(t)
and g(s). Since f(t) is the same on both sides of (26), as we have shown in (A.9) and (A.13), it follows that
the mean and autocorrelation functions are also equivalent, and that:

H{M1(t) +M2(t)} = H{M1(t)}+H{M2(t)} . (A.17)

We can therefore say that H{·} is linear in addition.
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